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Non-symbolic approaches to artificial
intelligence and the mind

By DaviD WILLSHAW

Centre for Cognitive Science, University of Edinburgh, 2 Buccleuch Place,
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Current theories of artificial intelligence and the mind are dominated by the
notion that thinking involves the manipulation of symbols. The symbols are in-
tended to have a specific semantics in the sense that they represent concepts
referring to objects in the external world and they conform to a syntax, being
operated on by specific rules.

I describe three alternative, non-symbolic approaches, each with a different em-
phasis but all using the same underlying computational model. This is a network
of interacting computing units, a unit representing a nerve cell to a greater or
lesser degree of fidelity in the different approaches. Computational neuroscience
emphasizes the development and functioning of the nervous system; the approach
of neural networks examines new algorithms for specific applications in, for ex-
ample, pattern recognition and classification; according to the sub-symbolic ap-
proach, concepts are built up of entities called sub-symbols, which are the activ-
ities of individual processing units in a neural network.

A frequently debated question is whether theories formulated at the sub-
symbolic level are ‘mere implementations’ of symbolic ones. I describe recent
work due to Foster, who proposes that it is valid to view a system at many differ-
ent levels of description and that, whereas any theory may have many different
implementations, in general sub-symbolic theories may not be implementations
of symbolic ones.
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1. The symbolic approach

The idea that thought involves the manipulation of symbols, the rules of thought
being the rules of logic, has a long pedigree, dating back to Hobbes, Descartes,
Locke and Hume, among others. The modern variant of this approach has had
two major influences. One is the development of the digital computer, which
has been seen as a machine for the manipulation of the symbols of formal logic
(Haugeland 1981). The second influence, developing through the linguistic theo-
ries of Chomsky (1957, 1968) is expressed in the notion that there is a Language
of Thought (Fodor 1975). As in linguistic theory, there is a semantics and an
interpretable syntax, the set of rules governing the allowable manipulations of
symbols representing concepts that refer to objects in the external world.

In a similar vein, most artificial intelligence techniques are based on the ap-
plication of a set of algorithms to a knowledge base, represented in some formal
language. Automated solutions are sought for problems in such areas as game
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playing, expert systems, natural language understanding, machine learning, plan-
ning, automated reasoning and theorem proving. Approaches to many of these
subjects are reviewed elsewhere in this volume.

According to many people, the limited success of such symbolic approaches has
begged the question whether there are other more suitable techniques. This paper
is about non-symbolic methods for studying artificial intelligence and the mind.
Three approaches are discussed, which although quite different in their objectives,
have many family resemblances. The first, computational neuroscience, takes the
view that, in investigating artificial intelligence and the mind, it is reasonable to
examine the only intelligent system known to exist, which involves attempting
to understand the central nervous system. The second arose from many years of
theorizing about the brain, which led eventually to the emergence of the field
of neural networks. The preoccupation here is to examine the computational
properties of collections of highly interconnected simple computing units, working
in parallel, that are modelled loosely on the nerve cells of the brain, and to
apply these networks to specific tasks of pattern recognition, classification, and
so on. The third approach comes closest to the symbolic approach, and can be
viewed as an attempt to substitute neural network based models for symbolic
models. Appropriately, this approach is named sub-symbolic. Each approach will
be described and evaluated.

(a) Criticisms of the symbolic approach

Many aspects of human reasoning do not seem to follow logical rules. A much
cited example is the Wason selection task (Johnson-Laird & Wason 1970). Sub-
jects were presented with a set of cards, each of which had a symbol on each side.
Initially they were allowed to see only one side of the cards and were then asked
to indicate which cards should be turned over to demonstrate the truth or falsity
of a particular proposition (such as ‘if there is a vowel on one side, there is an
even number on the other’). The response demonstrating that the subjects were
applying the rules of symbolic logic was observed in only 4% of cases. Poor logical
reasoning in abstract versions of a task and the ability to improve in more real-
world versions of it (Wason & Shapiro 1971; Johnson-Laird et al. 1972) counters
the view that thought is simply the manipulation of logical propositions. A more
general criticism is that, for many biological applications, the symbolic approach
seems inappropriate. The serial computer analogy that underlies rule-based sys-
tems seems inapplicable to the parallel hardware of the central nervous system.
Most importantly, it seems difficult to see how many of the tasks that humans
perform perfectly, such as those concerned with movement, vision and speech,
can be blocked out in terms of the execution of simple rules. As far as artificial
intelligence is concerned, Hofstadter (1980) commented ‘The strange flavour of
Al work is that people try to put together long sets of rules in strict formalisms
which tell inflexible machines how to be flexible.’

(b) Levels

The suggestion that, in some cases, symbolic theories may be inappropriate
points towards the issue of the level at which a theory should be formulated and
analysed. A widely quoted view is that usually attributed to Marr (1982), ac-
cording to which there are three levels: the computational, at which the nature
of the computation to be performed is expressed; the algorithmic, at which the
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Non-symbolic approaches to artificial intelligence and the mind 89

procedure for carrying out the computation is formulated; and the implementa-
tional, the level of hardware. A primary consideration is how many levels there
are and whether they are defined arbitrarily or have concrete form. One view
(Newell 1982) is that levels are a reflection of the physical world. Working from
the bottom, there is the device level, the circuit level, the logic circuit sub-level,
the symbol level, and so on. The highest level is the knowledge level, which is akin
to the semantic level of Pylyshyn (1984). Dennett (1971) proposes three levels,
which he calls stances. The top level, the intentional stance, reflects the ideal
computational level and may have little to do with the lower levels. According to
Rumelhart & McClelland (1985), there are many algorithmic sub-levels, bounded
by the computational level at one extreme and the implementational level at the
other.

As we shall see later, one issue has been whether the various levels are inde-
pendent. It has been argued that symbolic theories occupy one level and other
theories are mere implementation (Fodor & Pylyshyn 1988).

2. Computational neuroscience

Computational neuroscience uses mathematical analysis and computer simula-
tion to evaluate theories of the nervous system towards gaining an understanding
of the only intelligent system so far known. Compared with the goals of symbolic
enterprises, most theories in this field are relatively modest in scope, being con-
cerned with, for example, associative storage and retrieval rather than inductive
reasoning; theories for walking rather than chess playing.

Here the issue of levels is important. Churchland & Sejnowski (1992) highlight
the fact that in the nervous system there are organized structures on different
scales: ‘molecules, synapses, neurons, networks, layers, maps and systems’. Ac-
cording to these authors, this range of structural organization implies as many
levels of implementation and therefore of algorithms. They suggest that an in-
terlocked set of theories is appropriate for neuroscience, each having a computa-
tional, algorithmic and implementational component, but expressed at different
levels: a sort of floating triumvirate. Where the triumvirate is anchored depends
on the investigator’s point of view. For the case of associative memory, for exam-
ple, to a psychologist the algorithm concerns the manipulation of the information
to be stored and the implementation concerns how the strengths of the modifi-
able synapses underlying storage will be altered; to a physiologist the algorithm
concerns how the effect of any synapse is changed under various conditions of
depolarisation and excitation of the corresponding neurons, and the implementa-
tion is the operation of the voltage sensitive channels of the modifiable synapse;
to a pharmacologist the algorithm describes the conditions under which certain
molecules cause changes in channel properties, and the implementation is con-
cerned with the underlying chemical reactions.

Theories in computational neuroscience (i) use an entirely different set of con-
cepts from those used in symbolic theories and (ii) are multilevel.

As a first illustration, I continue the example of associative memory. Making
use of symbolic and computing analogies will give rise to theories of memory that
use such concepts as ‘stacks’, ‘pointers’ and ‘linked lists’, which may be adequate
for conventional computer databases but may not necessarily apply to the brain.
A more compelling picture, suggested originally by various analogies, such as

Phil. Trans. R. Soc. Lond. A (1994)
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those aiming to capture the essence of distributed storage (Willshaw et al. 1969),
is that information is stored in the modifiable synapses at the intersections of
the processes of two sets of nerve cells, an organization that is reminiscent of
the circuits within the hippocampus (Marr 1971; McNaughton & Morris 1987).
Many problems have been addressed at different levels: there is the question of the
storage capacity of this general class of architecture (Willshaw et al. 1969); the
question of the capacity of such networks in which the wiring details such as those
found in the hippocampus are incorporated (Willshaw & Buckingham 1990); at
a more detailed level is the issue of how the individual computations can be
made by the cells (Buckingham & Willshaw 1993); at an even more detailed level
is a question, currently of great interest, concerning the intercellular signalling
mechanism that enables synaptic modification to take place.

Another class of problems investigated by the techniques of computational neu-
roscience is concerned with the development of the nervous system. Here again,
theories are multilevel and are expressed in terms of differential equations rather
than logical formulae. Perhaps the most transparent example is concerned with
the development of connections in sensory systems, such as the visual system. It
is well known that in all vertebrates there is an ordered projection of the retina
onto the main visual centre of the brain (Gaze 1970). In amphibians and fishes,
the way in which connections are developed between the ganglion cells of the
retinae and the main visual centre, the optic tectum, can be thought of in terms
of a process of ‘self-organization’ of connections: the initial pattern of connections
is progressively refined until cells of neighbouring retinal origin come to connect
to neighbouring tectal cells. There is then the question of how the self-organizing
mechanism is realized, for which a means of interchanging information between
cells is required. There are two main candidates, one involving the use of corre-
lated neural activity and one the interchange of diffusible substances (Willshaw &
von der Malsburg 1976, 1979). This class of theory is now becoming of increasing
importance in the light of evidence that the developing nervous system is shaped
by the sensory information that it receives.

As a final example, I look at the type of problem that at one time Artificial
Intelligence practitioners would have rejected as trivial but now recognize as be-
ing difficult and significant. Like problems such as vision, speech and hand-eye
coordination, locomotion is one of those apparently effortless tasks for which sat-
isfactory theories are required. It would seem inappropriate to construct a theory
of locomotion in terms of a set of rules, programmed in, for example, Prolog,
such as ‘If heel is touching floor then move toe downwards’, ‘If left leg is mov-
ing forward then press down on right foot’, etc. A theory that is very different
from anything built on symbolic principles is due to Taga et al. (1991) on the
self-organized control of bipedal locomotion. Successful locomotion requires an
exquisite interaction between motor system and environment. The suggestion is
explored that bipedal locomotion is the result of the entrainment of a set of
coupled neural oscillators which drive the muscles and which receive feedback
from the environment. The model of locomotion developed is in the form of a
set of coupled differential equations representing a set of oscillators. Each oscil-
lator consists of two neurons acting at a joint and inducing torques in opposite
directions, which are the directions of contraction of flexor and of extensor mus-
cles. The strengths of the couplings between oscillators are calculated from the
known patterns of locomotion observed in humans. For example, in each leg the

Phil. Trans. R. Soc. Lond. A (1994)
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Non-symbolic approaches to artificial intelligence and the mind 91

knee and ankle oscillators produce two sequences of flexion and extension while
the hip oscillator is producing just one; the hip unit oscillators of the two legs
mutually inhibit each other to give alternation between left and right legs. Sim-
ulations of this model reproduce patterns of human walking that are resistant
to changes in environmental conditions, such as uphill slopes or rough terrain. A
switch from walking to running can be induced through changing the value of a
single parameter.

In summary, the theories of computational neuroscience are specific rather than
general, are multilevel in character and are expressed in a language whereby, in
principle, there is a straightforward mapping of the proposed elements of the
theory onto the system that will realize it.

3. Neural networks

As the name suggests, the field of neural networks has its roots in computa-
tional neuroscience and has been developing since the 1940s (McCulloch & Pitts
1943; Arbib 1964; Rumelhart et al. 1986a). It has a number of other names, such
as parallel distributed processing, neurocomputing and connectionism. Workers in
the field of neural networks are concerned with the development, analysis and
application of neurally inspired parallel devices. Such devices have found appli-
cation in many disciplines, from physics to psychology, engineering to economics,
geography to geology.

A neural network is made up of a set of simple computing units which influence
each other through modifiable connections, or weights. The activity of each unit
at any moment of time is determined by the combined effect of the activities of
the units which influence it, as modulated by the strengths of the appropriate
weights. Typically the activity X; of unit ¢ is computed as

Xi = F(ijinj — 91),

where w;; is the strength of the weight between units ¢ and j and ©; is the
threshold for cell i. F is the fixed activation function which specifies how the
accumulated input activation at cell 7 is transformed into an output signal. F
can have various possible forms, such as F(z) = 1if z > 0 (i.e. if Z;w;; X; > 6;),
F(z) = 0 otherwise; or it can be the sigmoidal function F(z) = 1/(1 + e *). In
both cases F(z) is a monotonically increasing function of z and varies between 0
and 1.

In the simple feedforward neural network, certain units are designated as input
units, certain others as output units, and units that are neither input nor output
units are called hidden units (Rumelbart et al. 1986b). In this case, the task of
the network is to compute a given input/output relationship; that is, for each of a
given set of values assigned to the input units the network is required to compute
specific values to be assigned to the output units. This requires the values of
the weights to be set appropriately. An advantage of this type of architecture is
that procedures have been developed for progressively changing weight values in
response to the errors in the outputs computed by the net as different examples
of the input/output pairs to be learned are presented. A learning procedure for
networks without hidden units was first developed in the 1950s (Rosenblatt 1958;
Block 1962). However, the computational power of these networks is limited, and
much of the recent interest has been due to the development of new learning

Phil. Trans. R. Soc. Lond. A (1994)
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output units

hidden units

input units

Figure 1. A feedforward neural network with three input units, two hidden units and two output
units. Each unit is represented by a circle. The arrows indicate which units are interconnected.

algorithms for more powerful networks that have hidden units (Rumelhart et
al. 1986b).

As a didactic example, I now describe a network that has been trained to learn
a simple binary classification problem.

(a) Mirror-symmetry

As first discussed in the late 1960s (Minsky & Papert 1969), one of the binary
classification problems that require hidden units for their solution is that of de-
termining whether a string of Os and 1s is symmetrical about its mid-point. The
computation of mirror-symmetry requires just two hidden units, independently
of the number of input units (Rumelhart et al. 1986b).

Figure 2 shows a simple network with weight values set which enables detection
of mirror symmetry in strings of 4-bit patterns. The output is 1 if, when the first
two bits are reversed, they form the second two bits, and 0 otherwise. The network
has four input units, two hidden units and one output unit. The input units are
binary valued, and the activities in the other units and the weights are all real
valued. The sigmoid activation function is used. It is common practice to treat
the threshold © associated with each hidden unit and each output unit as if it
were an extra weight, called a bias, of strength —© on a perpetually active input
to the unit in question.

I trained the network of figure 2 by the back propagation learning algorithm
(Rumelhart et al. 1986b). Training was ended when, for all inputs presented,
the continuously valued output was within 0.001 of its target value, at which
stage the network was deemed to have learned mirror-symmetry. The example of
mirror-symmetry will be used later.

(b) Advantages of the neural net approach

The neural network approach provides a general framework that accommodates
a large number of different types of models. There is little doubt that the class of
algorithms encompassed within neural networks overlaps those developed in other
contexts (such as statistics (Sarle 1994)). However, the range of models covered
and the accessibility to the non-specialist has made neural networks attractive to
workers from many disparate fields.

Many claims for neural networks over more conventional systems have been

Phil. Trans. R. Soc. Lond. A (1994)
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hidden unit 2
(3.09) [(1042) (52 -5 27) (-10.44) 7.18

\
Pl
output

unit

hidden unit 1 @

Figure 2. A feedforward neural network for computing mirror symmetry on 4-bit input strings:
four input units, two hidden units, one output unit. The numbers within the rectangles represent
the strengths of the connections between the corresponding two units, as computed by back
propagation; the value of the bias for a unit is shown within a rectangle with no incoming
arrow. The numbers within each circle is the value of the appropriate unit’s activity for the
input string ‘1110’

made (Smolensky 1987; Clark 1989; Hecht-Nielsen 1990; Hertz et al. 1991), which
I discuss under the categories flexibility, efficiency of operation, brain-like qualities
and learning.

1. Flexibility covers graceful degradation and generalization. Graceful degrada-
tion (Kohonen 1988) refers to the ability of a network still to function in the face
of structural damage. With greater degrees of damage, performance deteriorates
gradually rather than catastrophically. This property is a straightforward result
of using distributed methods of storage. Generalization concerns the frequently
quoted capability of neural networks to respond appropriately to unanticipated
inputs, in particular to missing or noisy input data (Clark 1989). There seems
to be an element of luck here, since a priori it is unlikely that the way the net-
work functions will match the as yet unknown responses to novel stimuli that are
required.

2. Efficiency of operation covers numerical, rather than logical, computation,
massively parallel constraint satisfaction and fast parallel search.

It is debatable whether the first two features are unique features of neural
networks. The manipulation of real numbers rather than the elements of symbolic
logic does not in itself convey any advantage (contrary to the view of fuzzy logic
practitioners (Kosko 1992)). Fast parallel search seems to be a positive feature of
neural networks, but it is a property of parallel systems in general.

3. Brain-like qualities. Neural networks are better models for the nervous sys-
tem than conventional computers, but are still gross oversimplifications.

4. Learning. Much of the rekindled interest in neural networks has been due to
the development of new methods for training the weights. On presentation of a
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stream of input/output pairs, the weights can be modified gradually in response
to the errors made, until the required computation is learned. This obvious ad-
vantage has to be tempered with the facts that in some cases the network will
learn only provided it has the correct structure; in other cases learning can be
slow, or learning on-line may not be an advantage. Notwithstanding, the abil-
ity of such systems to learn can be said to represent a real advantage. Learning
is possible in certain symbolic systems, but the emphasis on learning is not so
strong as in the neural network approach.

4. Neural networks as sub-symbolic systems

A clear exposition of the use of neural networks as sub-symbolic systems was
given by Smolensky 1988; see also Rumelhart et al. (1986a). Both semantics and
syntax now have a completely different form from that used in symbolic systems.
Each concept is represented by a pattern of activity over a set of units, the firing
of each unit representing the presence of a sub-symbol (micro feature) of the con-
cept. Sub-symbols are not operated on by symbol manipulation but participate in
numerical computation; Smolensky (1988) emphasizes that the language of these
systems is not that of symbolism but rather that of ‘the continuous mathemat-
ics describing a dynamical system’. There is now no fixed relation between the
representation of an entity and an external object. In a Language of Thought
view (Fodor & Pylyshyn 1988), the concepts ‘coffee’, ‘cup’, ‘sack’ and ‘jar’, for
example, each have their own fixed representation. The shades of meaning relat-
ing to ‘coffee’ in a ‘cup of coffee’, are then conveyed by the co-existence of the
symbols for ‘cup’ and for ‘coffee’. In contrast, in a sub-symbolic scheme different
patterns of activation represent ‘coffee’, depending on whether a ‘cup of coffee’,
a ‘sack of coffee’ or a ‘jar of coffee’ is meant; context is internal to the represen-
tation (Clark 1989). As far as syntax is concerned, the relation between entities
are now no longer expressed by rules that resemble those of logic but are rep-
resented subtly by the weight values distributed over the network. The process
that determines which units are active in a given situation depends delicately
on the counterbalance of the effects of the units on each other as modulated by
the strengths of the weights between them: ‘the operation of soft constraints in
a massively parallel fashion’.

(a) Criticisms of the sub-symbolic approach

It has been argued that many of the advantages claimed for sub-symbolic sys-
tems already exist in symbolic systems, particularly those recently developed in
Artificial Intelligence. For example, in the original type of production system,
which is a set of rules of the ‘if ... then’ type operating on a database of facts,
rules operate one at a time and in serial order (Newell & Simon 1963). However,
in more modern systems, the rules act in parallel, and sophisticated methods of
assessing priority are used where conflicts arise (Holland et al. 1989) (‘soft con-
straints acting in parallel’?). Aside from matters of representation, the principal
difference is that in production systems, revision of the rule base involves the
explicit revision of the strengths of existing rules or addition of new ones. Sub-
symbolic systems provide for rule revision but implicitly through the modification
of the existing set of connection strengths; there is no provision for the addition
of connections between units that were previously not directly connected.

Phil. Trans. R. Soc. Lond. A (1994)
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Fodor & Pylyshyn (1988) criticize sub-symbolic networks as representing a re-
turn to the old associationist ideas of psychology. They argue that symbolic rep-
resentations do not have the rich structure required of the Language of Thought.
As Chater & Oaksford (1990) point out, Fodor & Pylyshyn’s strongest claim
is that sub-symbolic systems can be best viewed as particular implementations
(albeit interesting ones) of symbolic systems. This carries the strong implication
that symbolic theories can be formulated and discussed independently of any for-
mulation at a lower level. I now consider another more formal approach which
addresses this issue.

5. Algorithms

In recent work, Foster (1992) attempts to interrelate methods for solving a
computational task that are defined at different levels by introducing a family of
ideal machines with which individual methods can be compared. Each machine
represents a description of the behaviour of the physical system on which the
given task is being performed, in as much or as little detail as is required. At
the highest, most abstract level is the input/output description of the task. At
the level of description considered, an algorithm is the sequence of states through
which the system may pass. Each state is a list of values defined over a set of
labels, which typically refer to the parameter values taken by the system at a
particular step. Foster defines a set of rules for constructing abstractions (less
detailed descriptions) of a given algorithm. Effectively a family of ideal machines
is constructed. Each method can be identified with a specific ideal machine, and
methods can be compared by comparing the corresponding ideal machines. Unlike
other idealizations (e.g. Turing machines) the descriptions of these ideal machines
can be mapped directly onto the underlying physical system.

Two algorithms are said to be equivalent if they follow the equivalent set of
states. Two states are equivalent if their set of (label, value) pairs are the same,
permutations of label being allowed. If algorithm 1 is an abstraction of algorithm
2 then algorithm 2 is said to be an implementation of algorithm 1.

(a) Mirror symmetry

To illustrate use of the formalism, a number of algorithms for detecting mirror
symmetry in bit strings are now constructed. The arguments follow closely those
of Foster (1992) for the case of exclusive-or.

The first column of table 1 (program A) gives a sample of pseudo-code for
detecting whether 4-bit strings are mirror-symmetric. The method used is to
check if the value of the first bit matches that of the last bit and that of the
second bit matches the penultimate bit. One possible description of the sequence
of states through which this program can go is shown in the columns of table 1,
for one particular input string. The labels are the set of variables and the next
instruction (which has no special status). Each column refers to a particular label,
and the entries in that column refer to the values that are associated with the
label at each step in the sequence (u means undefined). This is the description
for just one input string only; the full description would be for all 16 possible
inputs.

Even for this simple task there are other ways of computing mirror-symmetry.
One slightly unorthodox way (method B) is based on the observation that if each
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Table 1. A description of program A

program A X1 X2 X3 X4 Y1 Y2 Z
1 read X1; u u u u u u u
2  read X2; 1 u u u u u u
3 read X3; 1 1 u u u u u
4 read X4; 1 1 1 u u u u
5 if X1=X4 then Y1 = 1lelse Y1 = 0; 1 1 1 0 u u u
6 if X2=X3 then Y2 = 1 else Y2 = 0; 1 1 1 0 0 u u
7 if Y1=1 and Y2=1 then Z=1 else Z=0; 1 1 1 0 0 1 u
8 write Z; 1 1 1 0 0 1 0
9 end 1 1 1 0 0 1 0
Table 2. A description of program B

program B X1l X2 X3 X4 Y Z

1  read X1; u u u u u u

2  read X2; 1 u u u u u

3 read X3; 1 1 u u u u

4 read X4; 1 1 1 u u u

5 Y =2X1+4+X2-(2X4+ X3); 1 1 1 0 u u

6 ifY =0then Z =1celse Z =0; 1 1 1 0 2 u

7  write Z; 1 1 1 0 2 0

8 end 1 1 1 0 2 0

half of an m-bit string is interpreted as the binary encoding of a %n bit integer
(the order of the bits in the second half being reversed), then equality of the two
integers will signal mirror symmetry in the whole bit pattern.

For inputs X1, X2, X3, X4 we define Y = 2X1+ X2 — (2X4 + X3) and
check whether Y equals 0. The Foster description for the input values used in the
previous example is shown in table 2.

We can investigate the relationship between algorithms by using the following
operations to construct more abstract (less detailed) versions of algorithms.

1. Selection of states; selection of some states in the sequence.

2. Selection of values; selection of some label-value pairs.

3. Rounding; applying some mathematical function to each value to produce a
new value.

4. Duplication; copying sets of state values.

A trivial abstraction is to choose the entries for X1, X2, X3, X4 and Z for
the penultimate rows of both table 1 and table 2, and then repeat this operation
for each of the 16 possible input strings. This gives two identical descriptions,
containing the specification of input and output values only: the highest level
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*

Figure 3. Showing how the algorithms A, B, N and their abstractions for calculating mir-
ror-symmetry are related according to Foster’s analysis. Each algorithm is joined by an arrow
to the algorithm that is a direct abstraction of it, the arrow pointing towards the more abstract
algorithm. The star denotes the most abstract, top-level algorithm, which is the input—output
specification.

description of the algorithm for the given input values. This illustrates that there
always exists a common abstraction of any two algorithms.

To examine the possible equivalences between algorithms A, B and the neural
network method described earlier (called N), I now construct table 3. Each row
shows, for a different input string, all (label, value) pairs corresponding to the
penultimate lines of tables 1 and 2. For N, the important parameters are the
activations of the units of the network, and their values are shown here.

These three descriptions are not equivalent. Program A is described in terms of
the binary values for 3 labels; for program B there are just 2 labels with integer
values; the network IV is described by real values for 3 labels. Table 3 also shows
several further abstractions of these algorithms. Firstly, the values describing N
are rounded by replacing each number by the nearest integer value, to give INV;.
Program B is then abstracted in two stages: first duplicate the values grouped
under Y1 (with a change of the duplicated label to Y2) to form B;; second,
replace all negative values of Y1 by 1 and all positive values by 0, and then
perform the converse for the values of Y'2. The result, method B,, is identical to
N1, once the labelling of the columns has been standardized.

Even for this very simple example, the relations between the various different
methods for generating the given set of input/output pairs are not straightfor-
ward. The summary description shown in figure 3 demonstrates that none of the
algorithms A, B, N is an abstraction (or implementation) of any of the others,
and the algorithm which is an abstraction of all three is the trivial (top level)
description (marked by a star). The figure also illustrates that one of the symbolic
programs, B, is very much closer to the network method, N, than it is to the
other symbolic program, A.

In general, as more detail is removed from the possible algorithms at any inter-
mediate level, the algorithms become fewer in number until eventually only the
top level description remains. Going in the opposite direction, there is a similar
reduction in the number of possibilities, but this is now an effect of the constraints
of the physical system becoming increasingly important. There is not necessarily
a path between any two algorithms at different levels.

Foster’s approach produces a framework for discussing methods for solving a
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Table 3. A comparison of A, B and N
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given computational task in terms of a family of interrelated ideal machines. The
arbitrary specification of the number of levels used by some authors is removed
by considering all levels to be levels of description, in more or less detail, of the
physical system on which the given task is to be executed. The notion of imple-
mentation is couched in terms of the level of detail required. With reference to
neuroscience, this would seem to be a more satisfactory approach than reinter-
preting the notions of ‘computation’, ‘algorithm’ and ‘implementation’ according
to the level being considered. The general picture is that sub-symbolic algorithms
represent more detailed descriptions than symbolic ones, by virtue of the fact that
their usual level of description involves specification of the activities of units as
real numbers. Symbolic algorithms do not occupy a privileged position, but rep-
resent just one possible level of description. The dividing lines between these two
types of algorithms cannot be drawn easily: a symbolic algorithm may resemble a
sub-symbolic algorithm more closely than it does another symbolic one. With re-
spect to the usual claim that connectionist algorithms are mere implementations,
it cannot be said of a (symbolic) algorithm that there are so many implemen-
tations of it that there is nothing special about any particular (sub-symbolic)
one. Any algorithm may have many different implementations, although what
implementations of a given algorithm are valid are constrained by the nature of
the physical system on which the algorithm runs and for which all algorithms
are approximations, in a greater or a lesser degree of detail. Other constraints
are supplied by causality and interpretation, which Foster deliberately does not
consider.

6. Conclusions

At present we have little insight into how to program a machine to analyse
a visual scene, or navigate in a real-world environment, let alone display any
sort of ‘higher-level’ abilities. The symbolic approach to cognition and artificial
intelligence has been pursued with only limited success. It would be well to rec-
ognize that this is just one of a number of different approaches. Three alternative
non-symbolic approaches have been reviewed. The nature of each of them is con-
ditioned by the way in which they have developed and the type of problem that
they address. Whereas non-symbolic and symbolic approaches embody equiva-
lent computational power, they display significant differences. Non-symbolic ap-
proaches tend to imply inherently parallel and more brain-like theories which are
interpretable at many different levels. Non-symbolic theories tend to be relatively
modest in scope but are inherently flexible, incorporating mechanisms that are
adaptable through learning. They are usually formulated at a more detailed level
than symbolic ones. However, it does not follow that the former type is merely
an implementation of the latter, which is a matter for investigation in each par-
ticular case. The level at which any theory should be formulated depends on the
questions that are being asked, and the symbolic level is just one among many.

I thank Carol Foster, Bruce Graham and Peter Dayan for commenting on this manuscript and
the Medical Research Council for financial support under Programme Grant PG9119632.
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Discussion

D. DENNETT (Tufts University, U.S.A.). The result that two algorithms are
equivalent according to a specific set of abstract rules is not very interesting.
They are still two different ways of solving the problem.

D. WiLLsHAW. True. However, the question concerns the relationship of relative
abstraction that exists between two different algorithms which, at the highest
level, effect the same input—output mapping. We must also ask which algorithms
can be implemented in neurobiology.

D. PARTRIDGE (University of Exeter, U.K.). Are the abstractions that trans-
form a sub-symbolic algorithm into a representation identical to that obtained
from a symbolic algorithm? And is there any limitation on what transformation
abstractions are allowed?

D. WILLSHAW. Many abstraction operations are possible but Foster considered
a particular set. Some of these seem intuitively reasonable; for some others (such
as rounding), it is obviously important to define their scope, and more work is
needed on that point.

D. PARTRIDGE. Then I wonder what this work, as it currently stands, really
shows. For if any abstraction is allowed, then any such representation can be
transformed into any other (I suspect). It’s just a matter of devising the appro-
priate ‘abstraction’. Now, a question for both Dr Willshaw and Professor Brady.
They both stress that by building ‘intelligent’ robots interacting with the real
world, we are forced to tackle the tricky problems (e.g. noise) that purely soft-
ware models usually avoid. And they both implied that intelligence is an embod-
ied phenomenon, so robotics is more appropriate than the more popular abstract
simulations. But the only intelligent systems we know of are embodied in the
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‘wetware’ of the human brain. So why should electronic robots yield more insight
into human intelligence than disembodied abstractions will?

M. BrADY (University of Ozford, U.K.). A good try! But the problem is that,
at present, we can’t build anything like human-brain architectures to run our
robotics research.

D. PARTRIDGE. I wasn’t suggesting that we should build brain-like machines, but
that traditional Al isn’t obviously inferior to robotics. That Al has ignored various
problematic aspects of the real world is true, and perhaps it shouldn’t always
have done so. But one can’t rule out abstraction as a methodology. Scientists
always abstract from reality to make progress. The central question is the true
significance of what is ignored, and whether it can be added back in later, if
required.
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